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Aktn~cf .  A formula for the energy mrresponding to a potential 6 obeying (-0’ f 
r2)+ = 0 is derived as an expansion in ii-’ for manifolds with arbhay smooth 
boundaries and either Neumann or Dmchlet boundary mnditions. The first three terms 
in the expansion are explicitly determined and they agee  with results of Duplantier 
in three dimensions for flat space. Careful anention in the Dirichlet Ease is given to 
ensuring a well defined regularized expression for the kernel on the boundary surface 
derived from the Green fundion so as to ensure an unambiguous finite expression for 
the energy. 

Potential theory involving solutions of Laplace’s or Poisson’s equations and calcula- 
tion of electrostatic energies in various configurations is one of the classical areas of 
applied mathematics. An interesting variation is obtained when the Laplacian -Vz 
is replaced by -V2 + tcZ which is physically relevant to electrolytes in the linearized 
Debye-Hiickel approximation with n an inverse screening length. As discussed in 
more detail by Duplantier [l] it is of experimental interest to determine the elec- 
trostatic energy of electrolytes bounded by charged membranes of arbitrary shape. 
Theoretically Duplantier obtained the first few terms in an expansion in inverse pow- 
ers of K valid for K R  >> 1 where R is a typical radius of curvature of the boundaiy. 

In this paper we rederive these results and extend them to an arbitrary man- 
ifold M with coordinates &‘, a metric gfiv and dimension d,  bounded by a 
smooth (d - l)-dimensional surface aM with coordinates ii so that the bound- 
ary of M is specified by zfi(i). The induced metric on a M  is then Y i J ( z )  = 

For a surface charge density p ( i )  on BM the eneru is expressed in terms of a 
g, , (x)axf i /a&i  azylaii 1 z = 2 ( e ) .  

potential +(I) by 

for d v  = dd%&, d S  = d d - l & f i .  The two boundary conditions of particular 
interest are (i) +(z(i)) = +(i) prescribed on aM with b determined by a,d(Z) E 
n w a , , ~ ( ~ ) i , = r c ~ ,  = p(i) where n @ ( i )  is the unit inward normal on aM and 
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(ii) b(5)  fved on aM and so determining an+ = p .  In either case the energy is 
minimized by requiring 

D M Mdvi ly  and H Osbom 

A + = O  A = - V 2 + . ’  (2) 

subject to the appropriate boundary conditions, which gives & = 4CeM = -E,. In 
case (i) the solution, by standard methods, is 

for G,(z, s‘) the Dirichlet Green function satisfying GD(z,z‘)\==z(i)= 0, while in 
m e  (ii) 

for G,(x,I’) the N e U ”  Green function satisfying a ,G, (~ ,z ’ )1~=~(~)= 0. In 
both cases AGD,N(z. I’) = @(z, z‘). In case (i), at least formally, 

and in case (ii) 

d S d S’ p ( z )  g ( 5 ,  5’)  p(5‘) fMM.N = 2 J,, 
d5,*’) = GN(z7 z’)lz=z(e),z!=z(+’) 

where K ( 5 ,  5’) and g(&,z’) are symmetric kernels of a M  defied in terms of the 
Green functions G, and G,. 

To demonstrate an expansion of EM valid for large K we use previously obtained 
results (21 on the asymptotic form of the heat kernel Gv2( z , s‘; T )  corresponding to 
the operator erv’ as T - 0. This may be regarded as an extension of the well known 
DeWitt [3] asymptotic expansion, which gives information on the behaviour of Gvz as 
T -+ 0 for I‘ in the neighbourhood of I, to the case of manifolds with a boundary. 
In general the heat kernel is related to the Green function for A as in (2) by 

m 

G(z,z‘) = d r e F r r a  Gv2(I, z‘; 7). (7) 

In the Neumann case then from the definition (6) 



Heat kernels for manifolds with bounday 3289 

for Gvz,N, the heat kernel defined for Neumann boundary conditions. In the Dirichlet 
case it is necessary to be more careful about the divergent behaviour for 2' + i since 
the expression for EM,D in (5) has in general a non-integrable singularity at i = i'. 
Using results in the appendix we obtain the regulated definition 

where 6aM(2 , i ' )  = & - I ( ?  - Z' ) / f i  is the delta function on a M .  The limit 
in (9) may be shown to exist in the sense of distributions or after integration over 
suitably smooth test functions on a M ,  In the last term I< = T i J K i j  where ICij!") 
is the extrinsic curvature of a M  which may be defined by n, , (aZzp/8QiaiJ + 
Tt,L3x'/L3QiazP/aQj) = ICi j  for r t P  the Christoffel connection on M. 

For either Dirichlet or Neumann boundary conditions, or generalizations thereof, 
we have found a representation of Gv2 in the neighbourhood of the boundary as a 
formal expansion in a parameter e ,  If we define &(Z,i') as the geodetic interval on 
A A A  wtirCvinn i i j a . i A  i - ?A tho" .,....mino ..,ith i i  = i i j 2 ~ e  i - n / , Z l  

' I  VI- .  Y..,YL,..'& , V , " Y "  - l Y  ..&I.. '*u""Y"6 4 , -  - "\.. , ".I" ".U. Y J 
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In order to apply these formulae in (8) and (9) to obtain an expansion in l / ~  we use 
the result 

D M Mviviiy and H Osbom 

Applying (10) and (12) in (8), since r = O(n-') and using Vie' = 6; + 0 ( c 2 ) ,  
gives 

1 -  
2 

.. 
4n 

R:,, + I P K i j  + 6,, + s V 2 6 , ,  + 0(d4) 

(13) 
and likewise from (9) and (11) 

1 -  R i m  + K " K . .  '3 - ~ h - 2 ) ] 6 , M  2 + znV26BM + O ( K - ~ ) .  

(14) 
The leading term in the expansion for K is obtained by using 

where the negative sign of this O ( K )  term in (14) is essential since on insertion in (5) 
it is required to give &M,D > 0. The term proportional to K in (14), which is 0(1) 
as n 3 00, originates solely from the last term on the right-hand side of (9) since 
the corresponding terms in (11) involving K are just of the form K - K,3B'BJ/2r 
and on using (12) the resulting contribution vanishes. This is necessary as otherwise 
in (9) the potentially divergent integral seCC dre-"' / r  would be present. 

Using (9) and (11) it is easy to calculate the leading singular terms in the short- 
distance limit, U + 0, for the kernel K(Z,Z') 

excluding the 6,, contribution. The two contributions shown in (15), proportional 
to (2B)-d/2 and (2&) -d /2 t ' / 2 ,  represent non-integrable singularities on a M ,  al- 
though integrals with suitable test functions may be well defined regarding K as a 
distribution 141. 

For practical applications of these results, as considered by Duplantier [l], d = 3 
and the space M may be taken as flat so that R!, = 0. In this case k = li' - 
K'3 K,, and the eigenvalues of It-,, are l / R l ,  1/R, are the principal radii of 
curvature of the boundary, and hence K = 2 / R  = 1/R,  + l / R z  and R = 2 / R l R 2 .  
From (13) and (14) 

& M , h N L /  2n BM 

which are in exact accord with the results of Duplantier 111. obtained by a very 
different method. For a two-dimensional boundary JoM d S  R = 8 n ( l -  g) where g 
is the genus of a M ,  g = 0 for a sphere, this is a purely topological term. 
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Appendix 

In order to justilj the presence of the delta-function term in K ( z , z ‘ ) ,  as calculated 
in (9), it is necessary to pay special attention to the singularities present at coincident 
points in the Green function G(z, z‘) when integrating by parts if one point z lies 
on the boundary. Introducing an arbitrary smooth function f(z) on M, and on a M  
defining j ( z )  = f(z(z)), then formally Green’s theorem 

(17) 
defies K ( z , z ‘ )  and also anGD(j:,z’) as linear maps, or distributions, on test 
functions on a M ,  assuming that in (17) we set a,GD(j. ,z‘)l i .=Z(+,(~’2- n2)= 0. 
For simplicity here we take n = D without loss of generality. 

To analyse potentially singular contributions in (17) we introduce a regularized 
Green function by modifying (7) .- 

c 
KY*,*‘) = a,GXz,z’) a(nl,=,(a),zl=z(+r). 

+ 
After using the heat kernel equation, arGV2(.t, 2‘; r) + Gv2(5, 2’; r) V‘z = 0, and 
also by virtue of the Dirichlet boundary conditions satisfied by the regularized Green 
function, a,Gg(j:, z’)li.=Z(+),Z,=z(r,)- - 0, we may write instead of (17) 

k d u ’  a, Gb(j., z’) li=z(,)Vf ’f(z’) 

dS‘K‘(*,*’)j(i’) - d U ’ a ~ ~ v ~ , D ( 5 , z ’ ; € ) l ~ = = ( a ) f ( z ’ ) .  

(19) 
= lM J ,  

The left-hand side of (19) may be straightfonvardly shown to have a smooth limit 
as E + 0. On the right-hand side we employ our previously derived asymptotic 
expansion of the heat kernel Gv2,D(z, z‘; T )  based on using the natural coordinate 
system zp = (z,y) in the neighbourhood of aM where the metric takes the form 

With j: = + ( l a )  z’ = (dry’) and for B ( z , z ‘ )  - T - 0 the asymptotic expansion 
leads to the expression relevant in (19) 

ds2 = d y 2  + r i j ( z , y ) d z i d z j  yij(2,0) = qij(z). 

an%2,D(*3z’; T ,  

1 
Y 



1 + Z K ( " f ( 5 )  - a,f(z). (21) 

Following (17) this is then in accord with (9) and also with the additional relation 

An alternative method of defining a regularized kernel is to follow textbook [SI 
procedures by excluding from M a region bounded by a hemisphere S, so that for 
I' E S,, 2' is at a geodesic distance c from j: = ~ ( 2 ) .  For 2' E S, assuming 

c 
OnG,( 5, z') a,GD( *, z') V" = O ( C - ( ~ - ' )  ) (23) 

as c -+ 0 the effect of the exclusion on the volume integration on the left-hand side of 
(17) vanishes in this limit. On the rightihand side of (17) J,, + JaMc + Jsc where 
for z' E a M ,  a,,G,(j:,z') = 0, by virtue of the Dirichlet boundary conditions 
satisfied by G,, and further, K(2,5') is defined by (5). In consequence it remains 
to determine the limiting form as c -+ 0 of the integral 

c 
dS' 8, G,( 5, z') 8 f( z') - d S' 8, GD( j:, z') a,, f(z') . (24) IC = 1. L 

'lb proceed further we employ our results on the asymptotic expansion of the heat 
kernel to obtain an explicit form for the leading singular terms in a%G,(?,z'). 

If a ( x ,  x') denotes the geodetic interval on M, as calculated with the metric gfi", 
which satisfies afia@,a = 2u, then for I = j: = x(2) it may be expanded as 

. .  
+ y ' 2 + f j . . ( ~ ) g ' 8 J  - 1  2 Y  'I<.,-'-J , J U ' O ' +  

:J 

for g ' (2 ,z ' ) .  From its definition if z' E S,, 2u(j:,z') = cz and letting t,(i,z') = 
- a , ~ ( j : , z ' ) = y ' + ~ l ~ ~ . . U ~ 8 - j + . . . , ~ ~ ( & , z ' ) = - a , a ( ~ , z ' ) = - 8 . ; + . . . , t h e n  2 11 

on S,, [a + j ' j ( 5 ) t . t .  = c2. In terms of these variables we may write the required 
shortdistance expadidn, which is obtained from (20) and may be used to verify (23). 
as 
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On S, n, = O',o/c and since dv' = f i d d c [ l  + O(c2)] we may write, using e*, e; 
to set up a Cartesian coordinate system with origin at 5 = z(i) 

27# 
d R d = S d = -  J dS '  = cd-'dRd[l + O(c2)] 

with dad the usual d-dimensional solid-angle element. If 

then the hemisphere S, is defined by 0 < 0 < $r. Writing (25) in terms of tn, 5, 
and using ago = 2a/c ,  ainc,, = t n / c ,  alnt, = t , / c  on S, we may then obtain 

(26) n I . n \ d - l i n ~ n  F', = ccosv dGd = Sd-l\sln f7) U U U l l d _ ,  

f(4 = f(*) + e n a d ( * )  + ciaif(i) + .  ' .  

a : , f ( d )  = [cnanf(i) + t i a , f ( Z ) ] / ~ +  ... 
(27) 

neglecting terms which are ultimately negligibie in I, as c + 0. Since, averaging over 
directions perpendicular to n", ( d - l ) J d R d  Kj,ti<J = JdR, Kc2, then from (27) 

Comparing this with (17) requires the result (22) again and also in this case 

L M d  S' K( 3, if) f( 2 ' )  

= l i m ( /  dS'K(z ,z ' ) f (z ' ) - - -  2 ' d - 1  fc i , )  
c s* / 

" _"  
\JaM,2%>c* .-" 

K(Z) f ( i )  
d - 2  

+ 2 ( d  - 1)  

which ensures that K ( % , i ' )  is a well defined kernel on a M .  Although (29) and 
(9), for n -+ 0, are rather different we have checked that the two prescriptions for 
defining K(z; 2 ' )  are equivalent. With the prescription (29) and re-introducing n 
then the 0(1) part as n 3 00 arises both from the regularized integral defined by 
the limit c --t 0 as well as the last term in (29), unlike the corresponding case for 
(9). For the specific example of M with a flat metric bounded by a sphere, when 
the Dirichlet Green function can be determined exactly for IE = 0, we have checked 
that the prescription (29) is just such as to give = 0 for the boundary value + 
a constant since trivially in this case 4 = @ throughout M. 

In the Neumann case the kernel g(2 , i ' )  does not have non-integrable singulari- 
ties but corresponding calculations in this case show that for compatibility with (17) 
when G, 3 G, requires 

anGN(', "')l$==(6r),s'=z(i') = -60M(z , i ' ) .  (30) 
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