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Heat kernels for manifolds with boundary: applications to
charged membranes
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Silver Street, Cambridge CB3 9EW, UK
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Abstract. A formula for the energy comresponding to a potential ¢ obeying (- V2 +
k2)¢ = G is derived as an expansion in ~~' for manifolds with arbitrary smoocth
boundaries and either Neumann or Dirichlet boundary conditions. The first three terms
in the expansion are explicitly determined and they agree with results of Duplantier
in three dimensions for flat space. Careful attention in the Dirichlet case is given to
ensuring a well defined regularized expression for the kernel on the boundary surface
derived from the Green function so as to ensure an unambiguous finite expression for
the energy.

Potential theory involving solutions of Laplace’s or Poisson’s equations and calcula-
tion of electrostatic energies in various configurations is one of the classical areas of
applied mathematics. An interesting variation is obtained when the Laplacian —V2
is replaced by —V? 4+ x? which is physically relevant to electrolytes in the linearized
Debye-Hiickel approximation with = an inverse screening length. As discussed in
more detail by Duplantier [1] it is of experimental interest to determine the elec-
trostatic energy of electrolytes bounded by charged membranes of arbitrary shape.
Theoretically Duplantier obtained the first few terms in an expansion in inverse pow-
ers of « valid for xR > 1 where R is a typical radius of curvature of the boundary.

In this paper we rederive these results and extend them to an arbitrary man-
ifold M with coordinates x#, a metric g,, and dimension d, bounded by a
smooth (d — 1)-dimensional surface M with coordinates &' so that the bound-
ary of M is specified by x*(&). The induced metric on M is then 4;;(&) =
g,,(z)0c" [8&* Ox” | OE le=a(e)-

For a surface charge density (&) on 8M the energy is expressed in terms of a
potential ¢(x) by

1 .
E=E + Egp £M=§/Mdv(6#¢8“¢+ x2¢%) €3M=j;MdSqu 0y}

for dv = d%x/g, dS = d?-'&/F. The two boundary conditions of particular
interest are (i) ¢(z(£)) = @(&) prescribed on M with p determined by 3, (i) =
n#(£)8, ()| = zs) = A(#) where n#(&) is the unit inward normal on &M and
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(ii) p(&) fixed on OM and so determining 8, ¢ = p. In either case the energy is
minimized by requiring

Ap=1D A= V42 2)

subject to the appropriate boundary conditions, which gives £ = ££,, = —€,,. In
case (i) the solution, by standard methods, is

#2)= [ 48’ Go(e, ) Fhl o @(2) ©)
am
for Gp(z,z') the Dirichlet Green function satisfying GD(m,:c’ﬂI:I(é): 0, while in
case (if)
#2) =~ [ 45" Gy(2, ) 1o, A3 @
oM
for Gy(z, ") the Neumann Green function satisfying anGN(a:,x’)|$=$(i)= 0. In
both cases AGp (x, 2') = 6%(z,='). In case (i), at least formally,
Ewp =7 [ 4545’ p(@)K(2,8) (&)
' 2 Jom
(%)
K:(:i:,:i:') = 81: GD(x’ :c’) aiﬁlx:z(é),m’:z(ﬁ')
and in case (ii)
Erin = %/ dSdS p(@)g(@,2') (")
aM (6)

9(2,&) = Gn(2, )|, ey, 0= o8
where K(,4') and g(&,#’) are symmetric kernels of M defined in terms of the
Green functions G, and Gy.

To demonstrate an expansion of £,, valid for large « we use previously obtained
results [2] on the asymptotic form of the heat kernel Gg.(x, ', ) corresponding to
the operator e™¥" as = — 0. This may be regarded as an extension of the well known
DeWitt [3] asymptotic expansion, which gives information on the behaviour of Gy as
7 — 0 for &' in the neighbourhood of z, to the case of manifolds with a boundary.
In general the heat kernel is related to the Green function for A as in (2) by

G(z,z') = f d‘re"'":gv,(x, z'sT). (7
0
In the Neumann case then from the definition (6)

o0
g(:ﬁ,:ﬁ’) fit / dTe_—TK:'GVI,N(w?:Ef;T)Ia.:z(é)’za:z.(én) (8)
o
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for G2 , the heat kernel defined for Neumann boundary conditions. In the Dirichlet
case it is necessary to be more careful about the divergent behaviour for &’ — 2 since
the expression for £, 1, in (5) has in general a non-integrable singularity at z = 2'.
Using results in the appendlx we obtain the regulated definition

K(z,2") = hm (/ dre="""a nGvap(T, a's ~r)8 Ia: o(d),x'=z(&')

) (frel)lf2 Sorl 880 )45 K@) by (2,2 ©

where &, 04(#,8') = §4-1(2 — &)/ is the delta function on &M. The limit
in (9) may be shown to exist in the sense of distributions or after integration over
suitably smooth test functions on @M. In the last term K = 4% K,; where K;(#)
is the extrinsic curvature of @M which may be defined by n (82:::" /0% amf +
Tk, 027 [83°02° [03)) = K;; for T4 the Christoffel connectxon on M.

For either Dirichlet or Neumann boundary conditions, or generalizations thereof,
we have found a representation of Gg. in the neighbourhood of the boundary as a

formal expansion in a parameter <. If we define 5(#,4’) as the geodetic interval on
Ard &nheﬁnnd -u'J.Q AR A=A fhr_\n qccnminn P - ﬁf:z\ and unﬂ'\ Al — -ul.?}’) &
b e

AV Shausiyasg, LRSS - s UALFMLLE 4 g — LIl YV L

1
gV’:N(T)|8M=W ”&/2T[2+ f71/2(11+ K, aa’)

-~ %\/‘F‘rl” (a,.Kar" + —LVA?kI(ij&"&ja-k)

+3m(R42RY,) + 5(Ryy + RO,y )00

+ ‘1'151'(:'&‘2 + 7K K,-J-)+§5(K.-kh”‘j + 3K [;) 6t e

+ 1—;5‘%1(,,- K, & 6i5kat + O(es)l : (10)
V) is the covariant derivative acting on tensor fields on A1 with R;; the cor-

responding Ricci tensor, R = 7‘3R the scalar curvature, and for Rﬂw , the
Riemann tensor on M Rg,m(z) = n“(z)n“(z)am"/ax Ox? [9%! R, ap(x(2)),

RS, = %Y RY, .. Similarly in the Dirichlet case
¥) g %—I — 1 -—6/21' __\[_,rl,fz 1 - K a.!a.j
WGo10(7) nIaM_ (47”-)d/2 r TartH

+ iﬁ‘rl”(a‘- K&~ %vk I&'ij&ifrjék)

+
n.‘
=

[ o=

I I R
-|--1—2-1'1‘,‘~J-cra +Znninj‘7°'

+

+
Bl @
4=

T

K?— K K) — i52.(1(,. KR R SKK )8 e

KK o'aiatst + 0(63)] : (11)
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In order to apply these formulae in (8) and (9) to obtain an expansion in 1/x we use
the result

1 ~&f2r 52 _ 12 1 oAy
We o/ ”56M+T(V —ER)68M+§T2V2V26‘9M+”" (12)

Applying (10) and (12) in (8), since * = O(x~?) and using V;6/ = &/ + O(?),
gives

1 1 1 iy 1 B

(13)
and likewise from (9) and (11)

— _i __L 0 LF I A _l -2 _1,'2 -2
K fc[l o K ywe) (RM+K A‘.j 2Ix )}63M+2KV Sorm +O(x ).
(14)

The leading term in the expansion for K is obtained by using

llm(/ dr —————— le"‘:T—-—l-—)z—
(4‘.'1“.!")1/2 T (we)l/?

where the negatlve sign of this O(«) term in (14) is essential since on insertion in (5)
it is required to give £,4 p > 0. The term proportional to K in (14), which is O(1)
as kK — oo, Originates solely from the Iast term on the right-hand side of (9) since
the corresponding terms in (11) involving K are just of the form K — K. '67 /27
and on using (12) the resulting contribution vanishes. This is necessary as otherwise
in (9) the potentially divergent integral fc°° dre*'7 /T would be present.

Using (9) and (11) it is easy to calculate the leading singular terms in the short-
distance limit, & — 0, for the kernel K(&,2")

d P(id-1 (607
= U U] (UL ALy B

excluding the é,,, contribution. The two contributions shown in (15) proportional
to (2&)7%/? and (2&)-4/2t1/2, represent non-integrable singularities on dM, al-
though integrals with suitable test functions may be well defined regarding X as a
distribution [4].

For practical applications of these results, as considered by Duplantier [1], d = 3
and the space M may be taken as flat so that R, = 0. In this case R = K*?
K ‘JK and the eigenvalues of K, are 1/R;, 1/R, are the principal radii of

curvature of the boundary, and hence K=2/R=1/R;+1/R;, and R=2/R R,
From (13) and (14)

1 2 1 3 1 1 1 ) 1, . ,-A]
~ — 4+ = - - —= 8.p0 1
Emn 2k BMdS [p (1 + xR + 2xk?R* 2xk*R,R, K2 ipd'p|  (16a)

i ] G SO W S ) ) a*“] 16b
Emp E/st [“’ (1 "R 2eRE T3nRE,) T O (165)
which are in exact accord with the results of Duplantier [1], obtained by a very

different method. For a two-dimensional boundary form dS B = 8=(1— g) where g
is the genus of M, g = 0 for a sphere, so this is a purely topological term.

K~
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Appendix

In order to justify the presence of the delta-function term in X(£,#'), as calculated
in (9), it is necessary to pay special attention to the singularities present at coincident
points in the Green function G(z,z’) when integrating by parts if one point « lies
on the boundary. Introducing an arbitrary smooth function f(z) on M, and on M
defining f(#) = f(z(&)), then formally Green’s theorem

/Mdv‘ [a,, Gp(#: 2|50y V2 (2} = 0, Gp(2,2) |4y ) V 2 f(m’)]

/ dS'IC(:i‘,,:E')f(ﬁ:')—/ ds’ anGD(iax’)Li;—z‘(é) z“—x(i’)anf(é’)
oM oM TEERT=

(17)
defines K(&,%') and also 8,Gp(%,z’') as linear maps, or distributions, on test

functions on AM, assuming that in (17) we set 8, Gp(&,z')] T2 _ k2)=0.

For simplicity here we take « = ) without loss of generality.
To analyse potentially singular contributions in (17) we introduce a regularized
Green function by modifying (7)

. e o
Gf)(:c,:n')zj drGysp(z,2571)

:c":c(z

(18)
Ke(#,2') = 8,Ch(z,2') 3|, _

=z(#),c'=z(8') "

After using the heat kernel equation, 8 _Gg:(&,2'; 7) + Gga(&, 25 r)‘ﬁ’z = 0, and
also by virtue of the Dirichlet boundary conditions satisfied by the regularized Green
function, 8, Gp(&,2')|,__ (8).a = 0, we may write instead of (17)

‘=g (&)

Ldv'a,,af,(;e,m')|é=x(é)v’2f(w)

f dS’ICE(:i:,:i:’)f(:i:’)—/ Ao/ 8,692 (8,25 )| o0e /()
M M

()
The left-hand side of (19) may be straightforwardly shown to have a smooth limit
as € = 0. On the right-hand side we employ our previously derived asymptotic
expansion of the heat kernel Gg: p(z,z’; 7) based on using the natural coordinate
system z* = (z,y) in the nelghbourhood of M where the metric takes the form

ds? = dy? +'y,’(::,y)da: ‘Ao ¥ (=, 0)—7"’(2)

With & = z(&) «' = (&',%') and for &(&,z') ~ 7 — 0 the asymptotic expansion
leads to the expression relevant in (19)
8,.Gvs,p(&,2'; 7)

1 -ajer y’ —y'*far 5
~ We —;_e + - I\ a &

o0
—l] dze‘zz"‘"(h——l—h ao”)]
2 J, 2

(mwr)t/2
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using (12) and also

0y eV /4 ~ (r7)26(y) — 208 (Y) + VA28 ).
Hence in the limit ¢ — 0, using dv’ ~ dS'dy’(1 — ¥’ K) and f(z') ~ f(&') +
y'8, f(&'), then (19) becomes
/Mdv'BuGD(:&,w')|£=x($)V'2f(m')

= lim des' K(#,8") f(3) - W f'(é))

e—0
1oy zs R
+5K(@)f(#)-8,5(2). @)
Following (17) this is then in accord with (9) and also with the additional relation
8 (8,8 gc(a) erma(ony= Som(#:8) (22)

An alternative method of defining a regularized kernel is to follow textbook [5]
procedures by excluding from A a region bounded by a hemisphere S, so that for
a' €8, «' is at a geodesic distance ¢ from & = z(&). For z' € S, assuming

8,Gp(#,2')  8,Gp(&,2')V"? = O(c~4-1) (23)

as ¢ — 0 the effect of the exclusion on the volume integration on the left-hand side of
(17) vanishes in this limit. On the right'hand side of (17) [, — fo.. + [, Where
for ' € OM_ 8,Gp(&,2") = 0, by virtue of the Dirichlet boundary conditions
satisfied by Gy, and further, K(&,2’) is defined by (5). In consequence it remains
to determine the limiting form as ¢ — 0 of the integral

I, =/ds'anGD(5:,x')“5; f(m’)—/dS‘anGD(i:,a:’) 8. f(z'). (24)
S. S

To proceed further we employ our results on the asymptotic expansion of the heat
kernel to obtain an explicit form for the leading singular terms in 8, G (%, z’).

If o(z, z') denotes the geodetic interval on M, as calculated with the metric g#¥,
which satisfies 9“8, 0 = 20, then for z = & = z(#) it may be expanded as

o(&,2") = §y* + §9,;(8)6°67 - Y Ky6'67 + -
for &'(&,4'). From its definition if 2’ € §,, 20 (&, ') = ¢? and letting £, (&,2') =
—3n0’(i:,w') =y + %K".ja—‘a—a’ + - E:.(;E’;n") = —-8,0(&, x') = -&; 4 then
on S, £2 + 4 (2)¢;€; = . In terms of these variables we may write the required

short-distance expansion, which is obtained from (20) and may be used to verify (23),
as

; L'(3d) N Cid) . Ky oiad
6HGD(:E,;U’) = wfﬂ En(go.) d4/2 21"'.;/2 (20.) df2+1 132&
F('l'd" 1) [ —-df2e1rf . K'i~c3ri&f
A2 2 P j .
- PTE y dz (2% + 26) K—(d 1)—-——2&

(25)
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On 8, n, = &,a/cand since dv’ = /7 d?£[1+ O(c?)] we may write, using £,, &;
to set up a Cartesian coordinate system with origin at & = z(:t)

d/2
dS’ = ¢*~1dQ [t 4+ O(c?)) /dﬂd =S,= 2

1
I'(d)
with dQ?; the usual d-dimensional solid-angle element. If
£, =ccosb 49, = §,_,(sin8)4-1dedq,_, (26}

then the hemisphere S, is defined by 0 < 8 < i=. Writing (25) in terms of &, £
and using &, 0 = 20/c, &£, =&, /c, &' &, = & /c on S, we may then obtain

5 I(zd r(ld) 1 K;&é
8,Gp(2,2") 8}, = —(d~1)—- (d/z)zld_ 059+(d—2)2572d/2) cdl-l JEEL’E +.--
f(2) = f(8) 4+ £,8,f(8) + '8, f(&) + - 27

o f(2') = (6,0, F(2) + €8, f(#)] /e + -
neglecting terms which are ultimately negligibie in I, as ¢ — 0. Since, averaging over
directions perpendicular to n#, (d—1) fd2, K ,Jg {J JfdQ, K&2, then from (27)

g~-gdz)“’ﬂmjahmw d””aﬂwjﬂhwse

g a/z
T(id .
+322ﬂ@M@ﬂ@jmd
_% d— lf( ) f(a:)+2(d I\(:c)f(a:) (28)

Comparing this with (17) requires the result (22) again and also in this case

/ 4’ K(e, &) f(3)
am

= hm([ 48 K(z, &) f(&

py—y, |

CTVNSOM 20 >

d-2 -
*dw o K@@ (29)
which ensures that K(&,#') is a well defined kernel on 8AMM. Although (29) and
(9), for x — 0, are rather different we have checked that the two prescriptions for
defining K(&,#') are equivalent. With the prescription (29) and re-introducing «
then the O(1) part as x — oo arises both from the regularized integral defined by
the limit ¢ — 0 as well as the last term in (29), unlike the corresponding case for
(9). For the specific example of M with a flat metric bounded by a sphere, when
the Dirichlet Green function can be determined exactly for « = 0, we have checked
that the prescription (29) is just such as to give £, p = 0 for the boundary value ¢
a constant since trivially in this case ¢ = ¢ throughout M.

In the Neumann case the kernel g(#,®") does not have non-integrable singulari-
ties but corresponding calculations in this case show that for compatibility with (17)
when G — Gy requires

anGN("E?w’” _6BM(é’é') : (30)

dmo(@), =2 (@)
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Note added in proof. For additional recent articles on this subject, sce [6]-
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